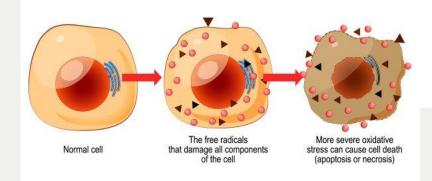


Neurodegenerative Diseases (NDDs)

 Loss of neurons in specific areas of the central nervous system, which leads to the progressive impairment of cognitive/motor functions

Multifactorial ↔ No effective treatments



Oxidative Stress

Definition: imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive immediates or to repair the resulting damage

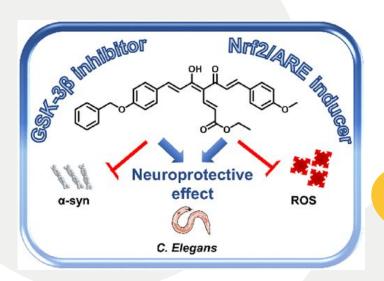
- Leads to misfolding of neurotoxic proteins
 - α -synuclein (α -syn)
 - phospho-tau (p-tau) and amyloid- β (A β)

Nuclear factor-erythroid related factor 2 (Nrf2)

- Important for antioxidant mechanisms in response to oxidative stress
 - Regulates the expression of detoxifying enzymes and antioxidant stress genes
 - Alleviates inflammation response

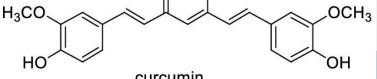
Altered expression of Nrf2 in neurons and astrocytes of Parkinson's and Alzheimer's patients

Why is this a problem?


- Nrf2 activation reduces α -syn and p-tau levels
- Good defense against oxidative stress insults and loss of proteostasis

GSK-3β Enzyme

- Increased expression and activity in AD and PD
- Determining factor for abnormal tau protein phosphorylation and aggregation into neurofibrillary tangles
 - High levels of hyperphosphorylated tau
 ← high levels of insoluble α-syn
 - Leads to extensive oxidative stress and neuronal cell death
- Activated GSK-3 β is connected to the downregulation of Nrf2
 - Negative correlation


The Ideal Solution

- Inhibit GSK-3β and induce Nrf2 for optimal cell defense against oxidative stress
- Multitarget drugs are possible because GSK-3β and Nrf2 are both involved in the same signaling pathways in a feed-forward manner

Curcumin

- Able to modulate many interconnected pathways implicated in the pathogenesis of multifactorial diseases like NDDs
- Capable of regulating mediators and biological targets of the inflammation cascade
- Considered as a pan-assay interfering compound (PAINS)
 - Can generate false assay signals
- Compound reactivity is dependent on structural context
- Molecules with a PAINS-based structural motif can act as selective modulators of well-defined targets

Design Strategy

- **Goal:** Concurrently modulate GSK-3β and Nrf2
- Strategy: Introduce a diethyl fumarate (DEF) fragment at the 4-position of the heptadienone framework of curcumin-based synthons
 - Identified GSK-3β inhibitors
 1-3 serve as starting platform

Synthesis of Curcumin-Fumarate Hybrids

Curcumin-based GSK-3β synthon

- 1: R= R¹= OCH₃
- 2: R= OBn, R1= OCH3
- 3: R= R¹= OBn

Ethylpropiolate

DEF Fragment

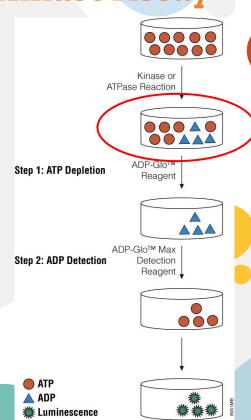
- 4: R= R¹= OCH₃ 5: R= OBn, R¹= OCH₃
- 6: R= R¹= OBn

7: R= R1= OBn

Overview

- Purpose
 - Ability to affect Nrf2 & GSK-3B activities
 - Protect neurons from damage by neurotoxins
- Types of Tests
 - Hybrids 4-7
 - Select Hybrids Based on Previous Tests
 - Hybrids 4-5

Tests Organization

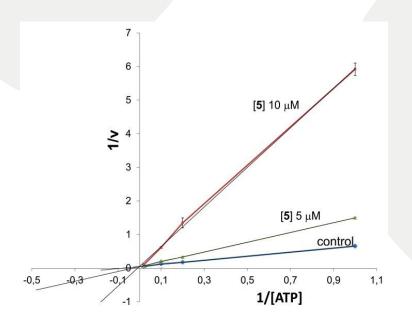

- 1 Hybrids 4-7
- 1. Measure GSK 3B Enzyme Inhibition
 - a. <u>Luminescent Kinase Assay:</u> amount of ATP post kinase reaction
 - b. $5,6 \rightarrow Mechanism of Inhibition$
- 2. Determine Ideal Concentration
 - a. <u>MTT assay:</u> neuron viability post-exposure to drug at range of concentrations
- 3. Measure Indirect Antioxidant Activity
 - a. <u>Probe: ROS formation</u> in neurons post-exposure
 - b. <u>Probe:</u> 1 <u>GSH levels</u> as a cause of antioxidant activity
 - i. **4,5** \rightarrow GSH levels over time
- 4. Measure BBB Permeation Ability
 - a. PAMPA-BBB Methodology: measure in vitro permeability

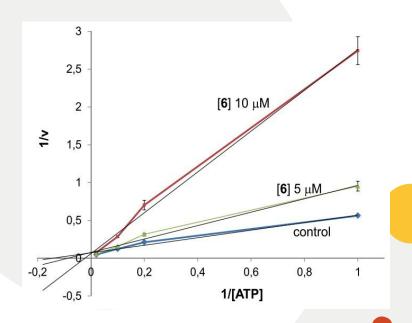
- Select Hybrids Based on Previous Tests
- Measure Effect on Nrf2/ARE pathway in 4-5
 - a. <u>Western blot:</u> cytoplasm-nuclear Nrf2 movement
 - b. <u>ELISA assay:</u> Nrf2-ARE binding
 - c. <u>RT-PCR:</u> NQO1 gene expression
- Measure ability to prevent neurotoxic effects in neuron 4-5
 - a. <u>AD in vitro models:</u> effect on B oligomers induced death
 - <u>PD in vitro models:</u> effect on 6-OHDA induced death
 - i. <u>Fluorescence microscopy:</u> A-syn aggregate formation
 - In vivo C.elegans model: effect on
 6-OHDA induced death in neurons in vivo

Biological Evaluations: Luminescent Kinase Assay

- Evaluate compounds' inhibition of the GSK-3β enzyme by using a human recombinant enzyme
- Based on the quantification of ATP present after kinase reaction
- First tested at highest concentration: 10 μM
 - IC₅₀ value determined for derivatives showing an inhibition percentage > 50%

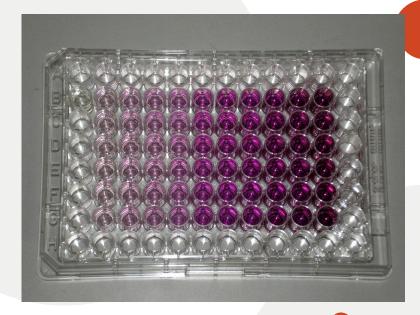
Biological Evaluations: Luminescent Kinase Assay


Compd	R	0	OH R ¹	GSK-3β inhibition		
	R	R ¹	R ²	IC ₅₀ (μM) ^a ± SEM	inhibition (%) ^{a,b}	
4	OCH₃	OCH₃	OCH ₂ CH ₃	>10	40 %	
5	OBn	OCH₃	OCH₂CH₃	8.39 ± 0.34		
6	OBn	OBn	OCH₂CH₃	6.09 ± 0.53		
7	OBn	OBn	ОН	>10	46 %	

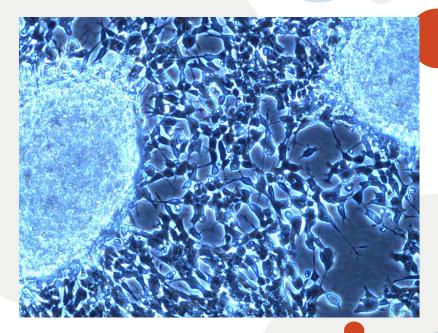

Smooth therapeutic inhibition of GSK-3

Biological Evaluations: Kinetic Study

- Investigate the mechanism of inhibition as regards to competition with ATP for compounds
 and 6
 - Varying concentrations of ATP and tested compounds
 - Concentration of substrate kept constant


Biological Evaluations: Kinetic Study

Cytotoxicity: MTT Assay

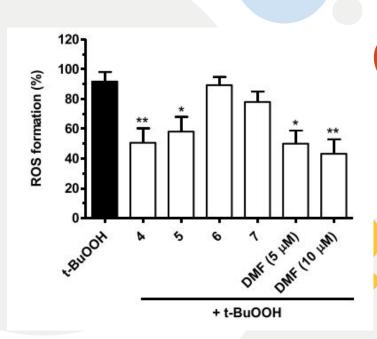

- 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) assay
 - SH-SY5Y cells (human neuronal cells) exposed to varying concentrations (1.25-40 µM) of synthesized compounds

MTT Assay

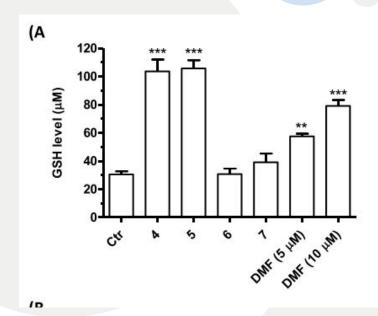
Cytotoxicity: Findings

- All tested compounds at concentrations < 10 µM did not affect cell viability
 - Concentration of 5 µM selected to perform all following assays in SH-SY5Y cells

SH-SY5Y Cells


Antioxidant Activity

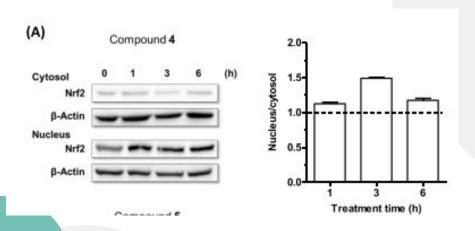
- Oxidative stress caused by reactive oxygen species (ROS)
- Antioxidants detoxify these radicals

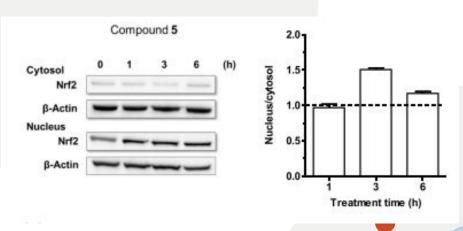

Antioxidant Activity

- Test compounds 4-7 as direct antioxidants
- Measure ROS levels (want them to decrease)
- Use fluorescent probe on ROS molecules

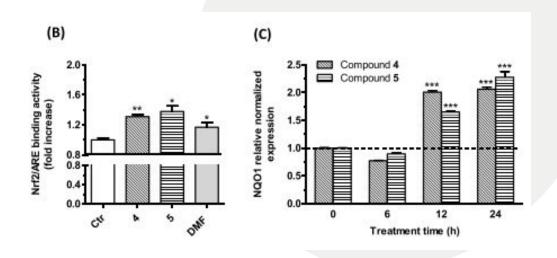
Antioxidant Activity

- Test how compounds 4-7 induce glutathione (GSH)
- Measure GSH levels (want them to increase)


Nrf2/ARE Pathway Activation

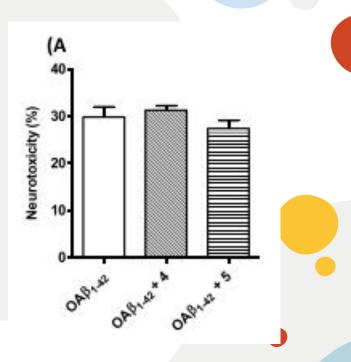

Oxidative stress and disrupted redox balance

- \Rightarrow Abnormal activity of the enzyme GSK-3 β
 - ⇒ Impairment of the transcriptional activity of Nrf2


Nrf2/ARE Pathway Activation

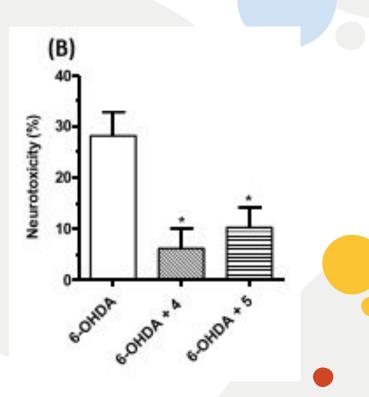
- Track Nrf2/ARE pathways specifically
- Use Western blotting to quantify Nrf2 in nucleus and cytosol

Nrf2/ARE Pathway Activation



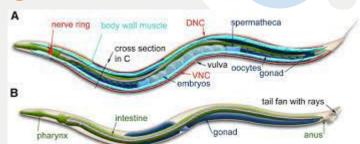
Neuroprotective Profile

- Test the neurotoxicity of compounds 4 & 5
- Ability to prevent SH-SY5Y cell death
- in vitro model of AD: accumulation of Aβ1-42 oligomers
- in vitro model of PD: induce cell damage with 6-OHDA

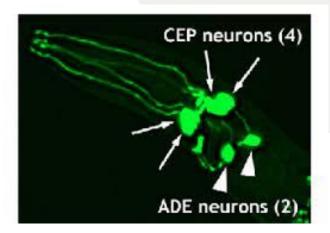

In Vitro Model of AD

- Neurotoxic effects from accumulation of soluble Aβ1-42 oligomers
- Both compounds failed to prevent
 Aβ1-42 oligomers induced cell death
- Incapability to serve as Aβ-based therapeutics

In Vitro Model of PD


- Neurotoxin 6-OHDA induces
 CNS oxidative damage and
 neuroinflammation
- Both compounds mitigate the 6-OHDA-induced decrease in cell viability
- Potential usefulness in the PD therapeutic area

Neuroprotective Effects: C. Elegans Model


C. elegans Model - In vivo

- Short life cycle, fast reproduction, high genetic inheritance
- 8 DA neurons
- Expression of antioxidant genes relies exactly on same inhibition model in humans
 - GSK-3 inhibits SKN-1 → no antioxidant gene expression
 - Identification of neuroprotective agents that can inhibit GSK-3 is possible
- BY250 strain expresses GFP and can be visualized over time

Neuroprotective Effects: C. Elegans Model

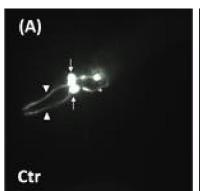
- Investigations via this model will include:
 - Exposing nematode to PD-inducing toxin (6-OHDA)
 - Visualizing of GFP from DA neurons

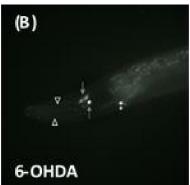
Neuroprotective Effects: Methods

Incubated with 5 μ M of each hybrid for 30 minutes

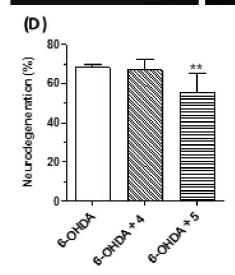
- With 5 μM of 6-OHDA
- After 72 hours, 4 CEP neurons examined and analyzed
- Nematodes incubated in 6-OHDA only → 68% degeneration

Neuroprotective Effects: Results


Curcumin-DEF Hybrid 4


- No phenotype salvaged
 - 67% of CEP neurons degenerated

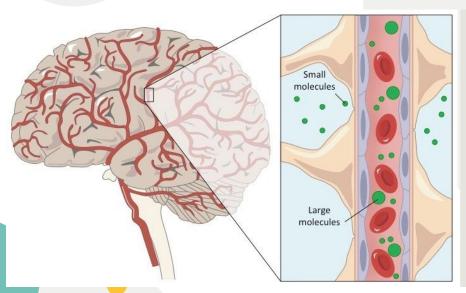
Curcumin-DEF Hybrid 5

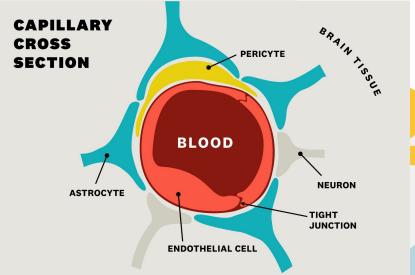

- Partial rescue of phenotype
 - 55% of CEP neurons degenerated

Neuroprotective Effects: Conclusions

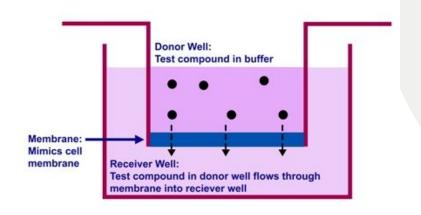
Analogue 5 proved to be the most effective protection against PD-inducing toxins

- 5 was the only effective inhibitor of GSK-3β
- Keap-1-dependent effects
 - Nrf2 may be released due to redox modification
- Activation of PI3K/AKT which leads to inhibition of GSK-3

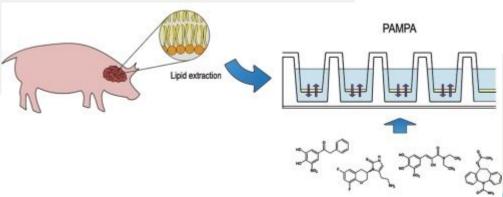

Further investigation showed compound 5 also effectively inhibited GSK-3 β in


SH-SY5Y cells

Can suppress degeneration in neuronal cells as well


Blood-Brain Barrier Permeation

- Controls the capability of the drug to reach the central nervous system
 - Contributes to the effectiveness of NDD treatment



Blood-Brain Barrier Permeation

PAMPA: parallel artificial membrane permeability assay

Blood-Brain Barrier Permeation

 Compounds showing a Pe value superior to 2.26 × 10-6 cm s-1 should be able to permeate the brain compartment (CNS +)

Table 2. Permeability (Pe 10⁻⁶ cm s⁻¹) in the PAMPA-BBB Assay for Compounds 4–7 with Their Predictive Penetration in the CNS^a

compound	$Pe (10^{-6} \text{ cm s}^{-1})^{b}$	prediction
4	2.5 ± 0.3	CNS +
5	4.8 ± 0.4	CNS +
6	4.5 ± 0.6	CNS +
7	1.7 ± 01	CNS +/CNS -

^aThe PBS:EtOH (70:30) mixture was used as solvent. ^bData are the mean ± SD of two independent experiments.

Comparing Curcumin-Fumarate Hybrids

- Derivative 7 was not chemically stable; the formation of a degradation product was observed
- Regarding GSK-3β inhibition, derivatives 5 and 6 turned out to be the most effective
- Analogues 4 and 5 increased GSH intracellular levels through the activation of the Nrf2/ARE pathway
 - Capable of inducing Nrf2 nuclear translocation and intensifying Nrf2/ARE binding activity
- 4-5 emerged as dual GSK-3β/Nrf2 modulators and had good
 BBB-penetrating capabilities

Effectiveness of Compounds 4/5

- 4 and 5 demonstrated a protective effect against the neurotoxicity induced by 6-OHDA
- Compound 5 recorded a neuroprotective effect when observing PD induced transgenic C. elegans CEP dendrites/cell bodies
 - Partial rescue of the toxic effects induced by 6-OHDA
- Multipotent profile could represent a lead compound worthy of further development for disease-modifying PD therapeutics

Table of Results

curcumin dimethyl-fuma rate compound	GSK-3β inhibition	antioxidant activity	Nrf2/ARE pathway activation	In vitro AD	In vitro PD	Neuropro tective in C.elegans	BBB permea tion	stability
4	_	+	+	_	+	_	+	+
5	+	+	+	_	+	+	+	+
6	+	_	N/A	N/A	N/A	N/A	+	+
7	-	_	N/A	N/A	N/A	N/A	+/-	-

Shortcomings

- Only inhibited GSK-3β activity, when activation of GSK-3β was closely involved in Nrf2 regulation as well as oxidative stress defense
 - Common molecular pathogenic mechanisms including oxidative stress, proteostasis, mitochondrial deficit, glutamate excitotoxicity, and neuroinflammation
- Failed to treat Alzheimer's Disease
 - Did not prevent Aβ1-42 oligomers-induced cell death
- Still in **pre-clinical testing** stages as of 2020
 - Has not yet been tested for bioavailability, drug toxicity, or formethod of drug delivery in humans (only animals)

References

Di Martino, Rita Maria Concetta, et al. *Novel Curcumin-Diethyl Fumarate Hybrid as a Dualistic GSK-3β Inhibitor/Nrf2 Inducer for the Treatment of Parkinson's Disease*, Nov. 2020, pp. 1–13.